Rashba interferometers: Spin-dependent single and two-electron interference

نویسنده

  • U. Zülicke
چکیده

Quantum transport in semiconductor nanostructures can be described theoretically in terms of the propagation and scattering of electron probability waves. Within this approach, elements of a phase-coherent electric circuit play a role similar to quantumoptical devices that can be characterised by scattering matrices. Electronic analogues of well-know optical interferometers have been fabricated and used to study special features of charge carriers in solids. We present results from our theoretical investigation into the interplay between spin precession and quantum interference in an electronic Mach-Zehnder interferometer with spin-orbit coupling of the Rashba type. Intriguing spin-dependent transport effects occur, which can be the basis for novel spintronic devices such as a magnet-less spin-controlled field-effect transistor and a variety of single-qubit gates. Their functionality arises entirely from spin-dependent interference of each single input electron with itself. We have also studied two-electron interference effects for the spin-dependent Mach-Zehnder interferometer, obtaining analytical expressions for its two-fermion-state scattering matrix. Using this result, we consider ways to generate two-electron output states for which the Rashba spin-subband quantum number and the output-arm index are entangled. Combining spin-dependent interference in our proposed Mach-Zehnder interferometer with a projective charge measurement at the output enables entanglement generation. As our particular scheme involves tuneable spin precession, electric-field control of entanglement production can be achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Spin dynamics in high-mobility two-dimensional electron systems

Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of spin polarization due to the electron-electron interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an effective out-ofplane...

متن کامل

The effect of Ramsauer type transmission resonances on the conductance modulation of spin interferometers

We use a mean field approach to study the conductance modulation of gate controlled semiconductor spin interferometers based on the Rashba spin-orbit coupling effect. The conductance modulation is found to be mostly due to Ramsauer type transmission resonances rather than the Rashba effect in typical structures. This is because of significant reflections at the interferometer’s contacts due to ...

متن کامل

Time reversal Aharonov–Casher effect using Rashba spin–orbit interaction

We propose a spin interferometer using Rashba spin–orbit interaction. A spin interference effect is demonstrated in small arrays of mesoscopic InGaAs rings. This spin interference is the time reversal Aharonov– Casher (AC) effect. The AC interference oscillations are controlled over several periods. This result shows evidence for electrical manipulation of the spin precession angle in an InGaAs...

متن کامل

Kondo effect in transport throughAharonov-Bohm andAharonov-Casher interferometers

We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007